تصحيح الامتحان الوطني الموحد للباكلوريا الدورة العادية 2021 مادة الرياضيات - المسالك الدولية

المدة: 4 ساعات المدة: 9 ساعات

Exercice 1 (12 points)

Pour tout entier naturel n, on considère la fonction f_n définie sur $\mathbb R$ par :

$$f_n(x) = \frac{-2e^x}{1 + e^x} + nx$$

Soit (C_n) sa courbe représentative dans un repère orthonormé (O,i,j). (On prendra $|\vec{i}| = ||\vec{j}|| = 1$ cm)

1

a Calculer $\lim_{x \to +\infty} (f_n(x) - nx + 2)$ puis interpréter graphiquement le résultat obtenu. (0.5pt)

$$\lim_{x \to +\infty} (f_n(x) - nx + 2) = \lim_{x \to +\infty} \left(\frac{-2e^x}{1 + e^x} + nx - nx + 2 \right)$$

$$= \lim_{x \to +\infty} \left(\frac{-2e^x}{1 + e^x} + 2 \right)$$

$$= \lim_{x \to +\infty} \left(\frac{2}{1 + e^x} \right)$$

$$= 0$$

Donc: $\lim_{x \to +\infty} \left(f_n(x) - nx + 2 \right) = 0$

D'où : la courbe C_n admet une asymptote d'équation y = nx - 2 au voisinage de $+\infty$.

- **b** Montrer que la courbe (C_n) admet, en $-\infty$, une asymptote (Δ_n) dont on déterminera une équation cartésienne. (0.5pt)
 - Si n=0, alors :

$$\lim_{x \to -\infty} f_0(x) = \lim_{x \to -\infty} \left(\frac{-2e^x}{1 + e^x} \right) = \left(\frac{0}{1 + 0} \right) = 0$$

D'où : la courbe C_n admet une asymptote (Δ_0) d'équation y=0 au voisinage de $-\infty$.

• Si $n \ge 1$, alors on a :

$$\lim_{x \to -\infty} f_n\left(x\right) = \lim_{x \to -\infty} \left(\frac{-2e^x}{1 + e^x} + nx\right) = \left(\frac{0}{1 + 0} + (-\infty)\right) = -\infty$$

On a:

$$\lim_{x \to -\infty} \frac{f_n(x)}{x} = \lim_{x \to -\infty} \left(\frac{1}{x} \frac{-2e^x}{1 + e^x} + n \right) = \left(0 \times \frac{0}{1 + 0} + n \right) = n$$

On a:

$$\lim_{x \to -\infty} \left(f_n\left(x\right) - nx \right) = \lim_{x \to -\infty} \left(\frac{-2e^x}{1 + e^x} + nx - nx \right) = \lim_{x \to -\infty} \left(\frac{-2e^x}{1 + e^x} \right) = 0$$

D'où : la courbe C_n admet une asymptote (Δ_n) d'équation y = nx au voisinage de $-\infty$.

$$(\forall x \in \mathbb{R}); \quad f'_n(x) = \frac{-2e^x}{(1+e^x)^2} + n$$

On a : $x \mapsto -2e^x$, $x \mapsto 1 + e^x$ et $x \mapsto nx$ sont des fonctions dérivable sur $\mathbb R$ comme somme et produit des fonctions dérivable sur $\mathbb R$. Or $1 + e^x \neq 0$, $\forall x \in \mathbb R$,

D'où : la fonction f_n est dérivable sur $\mathbb R$ comme somme, produit et quotient des fonction dérivable sur $\mathbb R$ et pour tout x de $\mathbb R$, on a :

$$f'_{n}(x) = \frac{-2e^{x} (1 + e^{x}) + 2e^{x} e^{x}}{(1 + e^{x})^{2}} + n$$

$$= \frac{-2e^{x} - 2e^{2x} + 2e^{2x}}{(1 + e^{x})^{2}} + n$$

$$= \frac{-2e^{x}}{(1 + e^{x})^{2}} + n$$

D'où : $\left(\forall x \in \mathbb{R}\right)$; $f_n'(x) = \frac{-2e^x}{\left(1 + e^x\right)^2} + n$

b Montrer que : $(\forall x \in \mathbb{R})$; $\frac{4e^x}{(1+e^x)^2} \le 1$ (0.5pt)

On a:

$$\frac{4e^x}{(1+e^x)^2} - 1 = \frac{4e^x - (1+e^x)^2}{(1+e^x)^2}$$

$$= \frac{4e^x - 1 - 2e^x + e^{2x}}{(1+e^x)^2}$$

$$= \frac{-1 + 2e^x + e^{2x}}{(1+e^x)^2}$$

$$= \frac{-(1-e^x)^2}{(1+e^x)^2} < 0$$

 $\mathsf{D'où}: \qquad \left(\forall x \in \mathbb{R}\right) \quad ; \frac{4e^x}{\left(1+e^x\right)^2} \leq 1$

f c En déduire le sens de variation de la fonction f_n sur $\Bbb R$.

(0.5pt)

(On distinguera les deux cas : n=0 et $n\geq 1$)

• Si n=0, alors : $\forall x \in \mathbb{R}$; $f_0'(x) = \frac{-2e^x}{\left(1+e^x\right)^2} < 0$,

D'où : pour n=0, la fonction f_0 est décroissante sur \mathbb{R} .

• Si $n \ge 1$, on a :

$$\frac{4e^x}{(1+e^x)^2} \le 1 \Leftrightarrow \frac{-2e^x}{(1+e^x)^2} \ge \frac{-1}{2}$$
$$\Leftrightarrow \frac{-2e^x}{(1+e^x)^2} + n \ge \frac{-1}{2} + 1$$
$$\Leftrightarrow f'_n(x) \ge \frac{1}{2}$$
$$\Leftrightarrow f'_n(x) \ge 0$$

D'où : pour tout entier $n \geq 1$, la fonction f_n est croissante sur \mathbb{R} .

(a) Déterminer l'équation de la tangente à la courbe (C_n) au point I d'abscisse 0

Soit (T) la tangente à la courbe (C_n) au point I(0;-1), (car $f_n(0)=-1$), alors :

 $(T) : y = f'_n(0)(x-0) + f_n(0) \Leftrightarrow (T) : y = \left(\frac{-2}{4} + n\right)x - 1$ \Leftrightarrow $(T): y = \left(n - \frac{1}{2}\right)x - 1$

D'où:

$$(T) : y = \left(n - \frac{1}{2}\right)x - 1$$

b Montrer que le point I est le seul point d'inflexion de la courbe (C_n)

La fonction f_n' est dérivable sur $\mathbb R$ et pour tout x de $\mathbb R$ on a :

erivable sur
$$\mathbb{R}$$
 et pour tout x de \mathbb{R} on a :
$$f_n''(x) = \frac{-2e^x(1+e^x)^2 + 2e^x\left(2\left(1+e^x\right)e^x\right)}{\left(1+e^x\right)^4}$$
$$= \frac{-2e^x\left(1+e^x\right) + 4e^{2x}}{\left(1+e^x\right)^3} = \frac{-2e^x - 2e^{2x} + 4e^{2x}}{\left(1+e^x\right)^3}$$

$$= \frac{(1+e^x)^3}{(1+e^x)^3}$$

Donc:

$$f''_{n}(x) = 0 \Leftrightarrow 2e^{x}(e^{x} - 1) = 0$$
$$\Leftrightarrow e^{x} - 1 = 0$$
$$\Leftrightarrow e^{x} = 1$$
$$\Leftrightarrow x = 0$$

$$\Leftrightarrow x = 0$$

Si
$$x > 0$$
, alors $e^x > 1$, alors $e^x - 1 > 0$, alors $\frac{2e^x(e^x - 1)}{(1 + e^x)^3} > 0$, alors $f_n''(x) > 0$

$${\rm Si}\,\, x<0, \ {\rm alors}\,\, e^x<1, \ {\rm alors}\,\, e^x-1<0, \ {\rm alors}\,\, \frac{2e^x(e^x-1)}{(1+e^x)^3}<0, \ {\rm alors}\,\, f_n''(x)<0$$

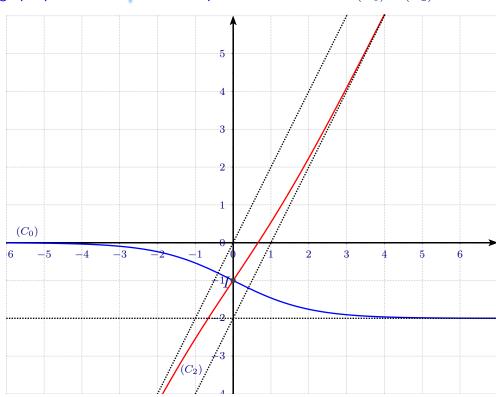
Donc $f_n''(x)$ change de signe au voisinage de 0.

le point I(0;-1) est le seul point d'inflexion de la courbe (C_n) . D'où:

4 Représenter graphiquement dans le même repère, les deux courbes (C_0) et (C_2) .

(0.5pt)

(0.5pt)



- Pour tout réel t > 0, on pose A(t) l'aire du domaine plan limité par (C_n) et les droites d'équations respectives : y = nx 2, x = 0 et x = t
 - (0.5pt) (0.5pt)

$$A(t) = \int_0^t f_n(x) - nx + 2dx$$

$$= \int_0^t \frac{-2e^x}{1 + e^x} + nx - nx + 2dx$$

$$= \int_0^t \frac{-2e^x}{1 + e^x} + 2dx = \left[-2\ln(1 + e^x) + 2x \right]_0^t$$

$$= -2\ln(1 + e^t) + 2t + 2\ln(2)$$

$$= 2t + 2\ln\left(\frac{2}{1 + e^t}\right)$$

D'où : $A(t) = 2t + 2\ln\left(\frac{2}{1+e^t}\right) cm^2$

www.elmaths.com

(b) Calculer $\lim_{t \to +\infty} A(t)$

(0.5pt)

$$\lim_{t \to +\infty} A(t) = \lim_{t \to +\infty} \left(-2\ln\left(1 + e^t\right) + 2t + 2\ln 2 \right)$$

$$= \lim_{t \to +\infty} -2\left(\ln\left(1 + e^t\right) - \ln\left(e^t\right)\right) + \ln 4$$

$$= \lim_{t \to +\infty} -2\ln\left(\frac{1 + e^t}{e^t}\right) + \ln 4$$

$$= \lim_{t \to +\infty} -2\ln\left(1 + \frac{1}{e^t}\right) + \ln 4$$

$$= -2\ln\left(1 + 0\right) + \ln 4$$

$$= \ln 4$$

D'où : $\lim_{t\to +\infty} A\left(t\right) = \ln 4 \ cm^2$

Partie II: On considère la suite $(u_n)_{n\geq 0}$ définie par : $u_0=0$ et $(\forall n\in\mathbb{N}); u_{n+1}=f_0\left(u_n\right)$

1 (a) Montrer que l'équation $f_0(x) = x$ admet une unique solution α dans \mathbb{R} (0.5pt)

Pour tout x de \mathbb{R} , on considère la fonction : $g(x) = f_0(x) - x$. On a la fonction g est continue et dérivable sur \mathbb{R} et on a :

$$g'(x) = f'_0(x) - 1 = \frac{-2e^x}{(1+e^x)^2} - 1 < 0$$

Donc la fonction g est strictement décroissante sur $\mathbb R$

 $\operatorname{Comme}\,\lim_{x\to-\infty}g\left(x\right)=+\infty>0\,\operatorname{et}\,\lim_{x\to+\infty}g\left(x\right)=-\infty<0,\,\operatorname{donc}\,0\in]-\infty,+\infty[$

D'après le théorème des valeurs intermédiaires l'équation g(x)=0 admet une unique solution α dans \mathbb{R} , d'où : l'équation $f_0(x)=x$ admet une unique solution α dans \mathbb{R}

b Montrer que : $(\forall x \in \mathbb{R}); \quad \left| f_0'(x) \right| \le \frac{1}{2}$ (0.5pt)

Pour tout x de \mathbb{R} , on a : $f_0'\left(x\right) = \frac{-2e^x}{\left(1+e^x\right)^2}$, donc $\left|f_0'\left(x\right)\right| = \frac{2e^x}{\left(1+e^x\right)^2}$

D'après la question **I)2)b)**, on a pour tout x de \mathbb{R}

$$\frac{4e^{x}}{\left(1+e^{x}\right)^{2}} \leq 1 \Leftrightarrow \frac{2e^{x}}{\left(1+e^{x}\right)^{2}} \leq \frac{1}{2} \Leftrightarrow \left|f_{0}'\left(x\right)\right| \leq \frac{1}{2}$$

D'où : $\left(\forall x \in \mathbb{R}\right); \quad \left|f_0'\left(x\right)\right| \leq \frac{1}{2}$

Posons : $m = \min \{\alpha, u_n\}$ et $M = \max \{\alpha, u_n\}$.

La fonction f_0 est continue sur [m,M] et dérivable sur m,M, alors : $(\exists c \in m,M)$ tel que :

$$\left| f_0(u_n) - f_0(\alpha) \right| = \left| u_n - \alpha \right| \left| f_0'(c) \right|$$

Puisque : $\left|f_0'(c)\right| \leq \frac{1}{2}$, alors : $\left|f_0\left(u_n\right) - f_0\left(\alpha\right)\right| \leq \frac{1}{2}\left|u_n - \alpha\right|$

D'où : $\left(\forall n \in \mathbb{N}\right); \quad \left|u_{n+1} - \alpha\right| \leq \frac{1}{2} \left|u_n - \alpha\right|$

b En déduire que : $(\forall n \in \mathbb{N}); |u_n - \alpha| \le \left(\frac{1}{2}\right)^n |\alpha|$ (0.5pt)

Si $(\forall n \in \mathbb{N})$; $u_n = \alpha$, alors : $|u_n - \alpha| = 0 \le \left(\frac{1}{2}\right)^n |\alpha|$

Supposons que $u_n \neq \alpha$ pour tout entier n. On a : $(\forall n \in \mathbb{N})$; $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$, alors :

$$|u_{1} - \alpha| \leq \frac{1}{2} |u_{0} - \alpha|$$

$$|u_{2} - \alpha| \leq \frac{1}{2} |u_{1} - \alpha|$$

$$\vdots$$

$$|u_{n-1} - \alpha| \leq \frac{1}{2} |u_{n-2} - \alpha|$$

$$|u_{n} - \alpha| \leq \frac{1}{2} |u_{n-1} - \alpha|$$

$$|u_{n} - \alpha| \leq \frac{1}{2} |u_{n-1} - \alpha|$$

Donc: $\left(\forall n \in \mathbb{N}\right); \quad \left|u_n - \alpha\right| \leq \left(\frac{1}{2}\right)^n \left|\alpha\right|$

c Montrer que la suite $(u_n)_{n\geq 0}$ converge vers α (0.5pt)

Puisque : $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |\alpha|$, Or $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$, alors : $\lim_{n \to +\infty} |u_n - \alpha| = 0$,

D'où : $\lim_{n \to +\infty} u_n = \alpha$

Partie III: On suppose dans cette partie que $n \ge 2$

Montrer que pour tout entier $n \geq 2$, $\exists ! \ x_n \in \mathbb{R}$ solution de l'équation $f_n(x) = 0$ (0.5pt)

Pour tout x de \mathbb{R} , la fonction f_n est continue et dérivable sur \mathbb{R} et on a :

$$f'_n(x) = \frac{-2e^x}{(1+e^x)^2} - n < 0 \quad \text{car } n \ge 2$$

Donc la fonction f_n est strictement décroissante sur $\mathbb{R}.$

 $\operatorname{Comme}\,\lim_{x\to -\infty}f\left(x\right)=-\infty<0\ \ \operatorname{et}\,\lim_{x\to +\infty}f\left(x\right)=+\infty>0\text{, donc }0\in]-\infty,+\infty[$

D'après le théorème des valeurs intermédiaires en déduire que :

l'équation $f_n(x) = 0$ admet une unique solution x_n dans \mathbb{R} .

b Montrer que pour tout entier $n \ge 2$, $0 < x_n < 1$ (On prendra $\frac{2e}{1+e} < 1.47$) (0.5pt)

On a:

$$f_n(0) = \frac{-2e^0}{1+e^0} + n \times 0 = \frac{-2}{2} = -1 < 0$$

$$f_n(1) = \frac{-2e^1}{1+e^1} + n \times 1 = \frac{-2e}{1+e} + n > -1.47 + 2 = 0.53 > 0$$

Donc : $f_n(0) \times f_n(1) < 0$, d'où : pour tout entier $n \ge 2$: $0 < x_n < 1$

2 (a) Montrer que pour tout entier $n \ge 2$, $f_{n+1}(x_n) > 0$ (0.5pt)

On a:

$$f_{n+1}(x_n) = \frac{-2e^{x_n}}{1 + e^{x_n}} + (n+1)x_n \Leftrightarrow f_{n+1}(x_n) = \frac{-2e^{x_n}}{1 + e^{x_n}} + nx_n + x_n$$
$$\Leftrightarrow f_{n+1}(x_n) = f_n(x_n) + x_n$$
$$\Leftrightarrow f_{n+1}(x_n) = 0 + x_n$$
$$\Leftrightarrow f_{n+1}(x_n) = x_n$$

Puisque : $\forall n \geq 2$, $x_n > 0$, alors : $\forall n \geq 2$, $f_{n+1}(x_n) > 0$

b En déduire que la suite $(x_n)_{n\geq 2}$ est strictement décroissante. (0.5pt)

On a:

$$f_n(x_n) = 0 \Leftrightarrow f_{n+1}(x_{n+1}) = 0$$

Donc:

$$f_{n+1}(x_{n+1}) - f_{n+1}(x_n) = 0 - f_{n+1}(x_n) = -f_{n+1}(x_n) < 0$$

Donc: $f_{n+1}(x_{n+1}) - f_{n+1}(x_n) < 0$, alors: $f_{n+1}(x_{n+1}) < f_{n+1}(x_n)$

Pour tout entier $n \geq 2$, la fonction f_n est croissante sur \mathbb{R} , alors : $x_{n+1} < x_n$

D'où : la suite $(x_n)_{n\geq 2}$ est strictement décroissante

(c) Montrer que la suite $(x_n)_{n\geq 2}$ est convergente. (0.5pt)

On a la suite $(x_n)_{n\geq 2}$ est décroissante et minoré par 0,

D'où : la suite $(x_n)_{n\geq 2}$ est convergente

(0.5pt) (0.5pt)

On a:

$$f_n(x_n) = 0 \Leftrightarrow \frac{-2e^{x_n}}{1 + e^{x_n}} + nx_n = 0 \Leftrightarrow nx_n = \frac{2e^{x_n}}{1 + e^{x_n}}$$

On considère la fonction $h\left(x\right)=\frac{2e^{x}}{1+e^{x}}=-f_{0}\left(x\right)$, alors h est continue dérivable et croissante sur \mathbb{R} , alors :

$$0 < x_n < 1 \Leftrightarrow h(0) < h(x_n) < h(1)$$

$$\Leftrightarrow 1 < \frac{2e^{x_n}}{1 + e^{x_n}} < \frac{2e}{1 + e}$$

$$\Leftrightarrow 1 < nx_n < \frac{2e}{1 + e}$$

$$\Leftrightarrow \frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1 + e}\right)$$

D'où: $\left(\forall n \geq 2\right)$; $\frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1+e}\right)$

(b) En déduire $\lim_{n \to +\infty} x_n$, puis montrer que $\lim_{n \to +\infty} nx_n = 1$

 $\mathsf{Puisque}: \frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1+e} \right) \ \mathsf{et} \ \lim_{x \to +\infty} \frac{1}{n} = \lim_{x \to +\infty} \frac{1}{n} \left(\frac{2e}{1+e} \right) = 0,$

On a : $nx_n = h(x_n)$, h(x) est continue et x_n est convergente, alors :

$$\lim_{x \to +\infty} nx_n = \lim_{x \to +\infty} h\left(x_n\right) = h\left(\lim_{x \to +\infty} x_n\right) = h\left(0\right) = 1$$

 $\lim_{n \to +\infty} nx_n = 1$ D'où:

(a) Montrer que pour tout entier $n \geq 2$, on a : $x_n \leq x_2$

(0.5pt)

(0.5pt)

On a la suite $(u_n)_{n\geq 2}$ est décroissante.

D'où: pour tout entier $n \ge 2$, on a : $x_n \le x_2$

b En déduire $\lim_{n\to\infty} (x_n)^n$ (0.5pt)

On a:

 $0 < x_n \le x_2 \Leftrightarrow 0 < x_n < \frac{1}{2} \left(\frac{2e}{1+e} \right)$ $\Leftrightarrow 0 < (x_n)^n < \left(\frac{e}{1+e} \right)^n$

Puisque $\frac{e}{1+e} < 1$, alors : $\lim_{x \to +\infty} \left(\frac{e}{1+e}\right)^n = 0$

D'où:

Exercice 2 (4 points)

Soient a, b et c trois nombres complexes non nuls tel que : $a + b \neq c$

(a) Résoudre dans l'ensemble \mathbb{C} l'équation d'inconnue z;

(0.5pt)

$$(E): z^2 - (a+b+c)z + c(a+b) = 0$$

Le discriminant Δ de l'équation (E) est :

$$\Delta = (a+b+c)^2 - 4c(a+b)$$

$$= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 4ac - 4bc$$

$$= a^2 + b^2 + c^2 + 2ab - 2ac - 2bc$$

$$= (a+b-c)^2$$

Donc l'équation (E) admet deux solutions sont :

$$z_1 = \frac{(a+b+c) + (a+b-c)}{2} = a+b$$
$$z_2 = \frac{(a+b+c) - (a+b-c)}{2} = c$$

Donc l'ensemble des solutions de l'équation (E) est : $S_E = \left\{a+b,c\right\}$

b On suppose dans cette question que : a=i, $b=e^{i\frac{\pi}{3}}$ et c=a-b Écrire les deux solutions de l'équation (E) sous forme exponentielle.

(0.5pt)

On utilise la méthode suivante : dans une somme ou une différence de deux complexes de module 1, $e^{ix} \pm e^{iy}$, on met en facteur $e^{i\frac{x+y}{2}}$ puis on utilise les formules d'Euler.

$$\text{On a}: \left\{ \begin{array}{l} e^{ix} + e^{iy} = e^{i\frac{x+y}{2}} \left(e^{i\frac{x-y}{2}} + e^{i\frac{y-x}{2}} \right) = 2\cos\left(\frac{x-y}{2}\right) e^{i\frac{x+y}{2}} \\ e^{ix} - e^{iy} = e^{i\frac{x+y}{2}} \left(e^{i\frac{x-y}{2}} - e^{i\frac{y-x}{2}} \right) = 2i\sin\left(\frac{x-y}{2}\right) e^{i\frac{x+y}{2}} \end{array} \right. \text{ où } x,y \in [0,2\pi[$$

Donc :

$$z_{1} = a + b = i + e^{i\frac{\pi}{3}} = e^{i\frac{\pi}{2}} + e^{i\frac{\pi}{3}}$$

$$= e^{i\left(\frac{\pi}{4} + \frac{\pi}{6}\right)} \left(e^{i\left(\frac{\pi}{4} - \frac{\pi}{6}\right)} + e^{i\left(\frac{\pi}{6} - \frac{\pi}{4}\right)}\right)$$

$$= 2\cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right) e^{i\left(\frac{\pi}{4} + \frac{\pi}{6}\right)}$$

$$= 2\cos\left(\frac{\pi}{12}\right) e^{i\left(\frac{5\pi}{12}\right)}$$

$$z_{2} = c = a - b = i - e^{i\frac{\pi}{3}} = e^{i\frac{\pi}{2}} - e^{i\frac{\pi}{3}}$$

$$= e^{i\left(\frac{\pi}{4} + \frac{\pi}{6}\right)} \left(e^{i\left(\frac{\pi}{4} - \frac{\pi}{6}\right)} - e^{i\left(\frac{\pi}{6} - \frac{\pi}{4}\right)}\right)$$

$$= 2i\sin\left(\frac{\pi}{4} - \frac{\pi}{6}\right) e^{i\left(\frac{\pi}{4} + \frac{\pi}{6}\right)}$$

$$= 2\sin\left(\frac{\pi}{12}\right) e^{i\frac{\pi}{2}} e^{i\left(\frac{5\pi}{12}\right)}$$

$$= 2\sin\left(\frac{\pi}{12}\right) e^{i\left(\frac{11\pi}{12}\right)}$$

Or:
$$\cos\left(\frac{\pi}{12}\right) > 0$$
 et $\sin\left(\frac{\pi}{12}\right) > 0$, alors: $z_1 = 2\cos\left(\frac{\pi}{12}\right)e^{i\left(\frac{5\pi}{12}\right)}$ et $z_2 = 2\sin\left(\frac{\pi}{12}\right)e^{i\left(\frac{11\pi}{12}\right)}$

2 Le plan complexe est rapporté à un repère orthonormé direct (O, \bar{u}, v) .

On considère les trois points A(a), B(b) et C(c) qu'on suppose non alignes.

Soient P(p) le centre de la rotation d'angle $\frac{\pi}{2}$ qui transforme B en A et Q(q) le centre de la rotation d'angle $\left(-\frac{\pi}{2}\right)$ qui transforme C en A et D(d) le milieu du segment [BC]

(a) Montrer que :
$$2p = b + a + (a - b)i$$
 et $2q = c + a + (c - a)i$.

Soient R_1 la rotation de centre P et d'angle $\frac{\pi}{2}$ et R_2 la rotation de centre Q et d'angle $\frac{-\pi}{2}$ On a :

$$\begin{cases} R_1(z) = e^{i\frac{\pi}{2}}(z-p) + p = i(z-p) + p \\ R_2(z) = e^{i\frac{-\pi}{2}}(z-q) + q = -i(z-q) + q \end{cases}$$

Donc :

$$R_{1}(B) = A \Leftrightarrow i(b-p) + p = a \Leftrightarrow ib - ip + p = a \Leftrightarrow p(1-i) = a - ib$$

$$\Leftrightarrow p = \frac{a - ib}{1 - i} \Leftrightarrow p = \frac{(a - ib)(1 + i)}{2} \Leftrightarrow 2p = a + ai - ib + b$$

$$\Leftrightarrow 2p = b + a + (a - b)i$$

D'où : 2p = b + a + (a - b)i

$$R_{2}(C) = A \Leftrightarrow -i(c-q) + q = a \Leftrightarrow -ic + iq + q = a \Leftrightarrow q(1+i) = a + ic$$

$$\Leftrightarrow q = \frac{a+ic}{1+i} \Leftrightarrow q = \frac{(a+ic)(1-i)}{2} \Leftrightarrow 2q = a - ai + ic + c$$

$$\Leftrightarrow 2q = c + a + (c-a)i$$

D'où : 2q = c + a + (c - a)i

(b) Calculer :
$$\frac{p-d}{q-d}$$

(0.5pt)

Puisque D est le milieu de [BC], alors : $d=\frac{b+c}{2}=\frac{a}{2}$ et on a : c=a-b, alors :

$$\frac{p-d}{q-d} = \frac{2p-2d}{2q-2d} = \frac{b+a+(a-b)\,i-a}{c+a+(c-a)\,i-a} = \frac{b+ci}{c-bi} = \frac{i\,(c-ib)}{c-ib} = i$$

D'où : $\frac{p-d}{q-d}=i$

 \bigcirc En déduire la nature du triangle PDQ.

(0.5pt)

On a:

$$\frac{p-d}{q-d} = i \Rightarrow \begin{cases} \left| \frac{p-d}{q-d} \right| = |i| = 1 \\ \left(\overrightarrow{QD}, \overrightarrow{DP} \right) \equiv \arg\left(\frac{p-d}{q-d} \right) [2\pi] \end{cases}$$

$$\Rightarrow \begin{cases} PD = QD \\ \left(\overrightarrow{QD}, \overrightarrow{DP} \right) \equiv \arg\left(i \right) [2\pi] \equiv \frac{\pi}{2} [2\pi] \end{cases}$$

$$\Rightarrow \begin{cases} PD = QD \\ (QD) \perp (DP) \end{cases}$$

Donc $(QD) \perp (DP)$, d'où : PDQ est un triangle rectangle et isocèle en D.

- Soient E le symétrique de B par rapport à P et F le symétrique de C par rapport à Q et K le milieu du segment $\lceil EF \rceil$
 - (0.5pt) Montrer que l'affixe de K est $k = a + \frac{i}{2}(c b)$.

Puisque P le milieu de [EB], Q le milieu de [FC] et K le milieu de [EF], alors :

$$p = \frac{e+b}{2}$$
; $q = \frac{f+c}{2}$; $k = \frac{e+f}{2}$

Donc:

$$\begin{split} k &= \frac{1}{2} \Big(2p - b + 2q - c \Big) \\ &= \frac{1}{2} \Big(b + a + (a - b) i - b + \not c + a + (c - a) i - \not c \Big) \\ &= \frac{1}{2} \Big(2a + (c - b) i \Big) \\ &= a + \frac{1}{2} \Big(c - b \Big) i \end{split}$$

D'où : $k = a + \frac{1}{2}(c-b)i$

b Montrer que les points K, P, Q et D sont cocycliques.

(0.5pt)

Quatre points K, P, Q et D sont cocycliques ou alignés si et seulement si leur affixes complexes vérifient $\frac{z_P-z_D}{z_Q-z_D} imes \frac{z_Q-z_K}{z_P-z_K}$ est réel. On a :

$$\frac{z_P - z_D}{z_Q - z_D} \times \frac{z_Q - z_K}{z_P - z_K} = \frac{p - d}{q - d} \times \frac{q - k}{p - k} = i \times \frac{2q - 2k}{2p - 2k}
= i \times \frac{c + a + i(c - a) - 2a - i(c - b)}{b + a + i(a - b) - 2a - i(c - b)} = i \times \frac{c - a + i(b - a)}{b - a + i(a - c)}
= i \times \frac{-b - ic}{-c + ib} = i \times \frac{i(-c + ib)}{-c + ib} = i \times i = -1 \in \mathbb{R}$$

D'où : les points K, P, Q et D sont cocycliques.

Exercice 3 (4 points)

Partie I: On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 47x - 43y = 1

Vérifier que le couple (11, 12) est une solution particulière de l'équation (E). (0.25pt)

On a: $47 \times 11 - 43 \times 12 = 517 - 516 = 1$,

Donc : le couple (11,12) est une solution particulière de l'équation (E).

Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation. (0.75pt)

On a : $\begin{cases} 47x - 43y = 1 \\ 47 \times 11 - 43 \times 12 = 1 \end{cases} \iff 47(x - 11) = 43(y - 12)$

Or : 47/43(y-12) et $47 \wedge 43 = 1$, alors d'après le théorème de Gauss, 47/(y-12), donc il existe un entier relatif k tel que y-12=47k, alors :

$$47 (x - 11) = 43 (y - 12) \Leftrightarrow \begin{cases} 47 (x - 11) = 43 (y - 12) \\ y - 12 = 47k \end{cases}$$
$$\Leftrightarrow \begin{cases} 47 (x - 11) = 43 \times 47k \\ y - 12 = 47k \end{cases}$$
$$\Leftrightarrow \begin{cases} x - 11 = 43k \\ y - 12 = 47k \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 43k + 11 \\ y = 47k + 12 \end{cases}$$

L'ensemble des solution dans $\mathbb{Z} \times \mathbb{Z}$ de l'équation (E) est : $S_E = \left\{ \left(43k + 11, 47k + 12\right)/k \in \mathbb{Z} \right\}$

Partie II: On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (F): $x^{41} \equiv 4$ [43]

Soit $x \in \mathbb{Z}$ une solution de l'équation (F).

(a) Montrer que x et 43 sont premier entre eux, en déduire que : $x^{42} \equiv 1$ [43] (0.5pt)

- Posons : $d=x \wedge 43$, alors : d/43, donc d=1 ou d=43. Supposons que d=43, alors 43/x, alors $x\equiv 0$ [43], alors $x^{41}\equiv 0$ [43] et puisque $x^{41}\equiv 4$ [43], alors $4\equiv 0$ [43], absurde, donc $d\neq 43$, d'où d=1, alors $x\wedge 43=1$, D'où : x et 43 sont premier entre eux.
- ullet On a 43 est un nombre premier qui ne divise pas x. D'après le théorème de Fermat,

$$x^{43-1} \equiv 1 \, [43] \iff x^{42} \equiv 1 \, [43]$$

D'où : $x^{42} \equiv 1 [43]$

- **(0.5pt)** Montrer que : $4x \equiv 1$ [43], en déduire que : $x \equiv 11$ [43]
 - On a:

$$\left\{ \begin{array}{l} x^{41} \equiv 4 \, [43] \\ x^{42} \equiv 1 \, [43] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x^{41} \times x \equiv 4 \times x \, [43] \\ x^{42} \equiv 1 \, [43] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x^{42} \equiv 4x \, [43] \\ x^{42} \equiv 1 \, [43] \end{array} \right. \Rightarrow \left. 4x \equiv 1 \, [43] \right.$$

D'où : $4x \equiv 1 [43]$

• On a :

$$\left\{ \begin{array}{l} 4x \equiv 1 \, [43] \\ 44 \equiv 1 \, [43] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 11 \times 4x \equiv 11 \times 1 \, [43] \\ 44 \times x \equiv 1 \times x \, [43] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 44x \equiv 11 \, [43] \\ 44x \equiv x \, [43] \end{array} \right. \Rightarrow x \equiv 11 \, [43]$$

D'où : $x \equiv 11 [43]$

2 Donner l'ensemble des solutions dans \mathbb{Z} de l'équation (F).

(0.5pt)

- Si $x^{41} \equiv 4 \, [43]$, alors $x \equiv 11 \, [43]$ (d'après la question II)1)b)
- Si $x \equiv 11 [43]$, alors $x^{41} \equiv 11^{41} [43]$. Puisque 43 est premier et que $43 \wedge 11 = 1$, alors d'après le théorème de Fermat, $11^{42} \equiv 1\,[43]$, Donc, on a :

•
$$11 \times 11^{41} \equiv 1 \ [43] \Rightarrow 44 \times 11^{41} \equiv 4 \ [43]$$

• $44 \equiv 1 \ [43] \Rightarrow 44 \times 11^{41} \equiv 11^{41} \ [43]$ $\Rightarrow 11^{41} \equiv 4 \ [43] \Rightarrow x^{41} \equiv 4 \ [43]$

Finalement : $x^{41} \equiv 4 [43] \Leftrightarrow x \equiv 11 [43].$

D'où l'ensemble des solution dans \mathbb{Z} de l'équation (F) est : $S_F = \left\{43k + 11/k \in \mathbb{Z}\right\}$

Partie III: On considère dans $\mathbb{Z} \times \mathbb{Z}$ le système à deux équations suivant (S): $\begin{cases} x^{41} \equiv 4 \, [43] \\ x^{47} \equiv 10 \, [47] \end{cases}$

- 1 Soit x une solution du système (S).
 - a Montrer que x est solution du système (S') : $\begin{cases} x \equiv 11 \, [43] \\ x \equiv 10 \, [47] \end{cases}$ (0.5pt)
 - On a x est solution de (S), alors $x^{41} \equiv 4[43]$, alors $x \equiv 11[43]$. (d'après la question II)1)b)
 - On a x est solution de (S), alors $x^{47} \equiv 10\,[47]$, alors $x \wedge 47 = 1$, et puisque 47 est premier, alors d'après le théorème de Fermat,

$$x^{47-1} \equiv 1 \, [47] \Leftrightarrow x^{46} \equiv 1 \, [47] \Rightarrow x^{47} \equiv x \, [47] \Rightarrow x \equiv 10 \, [47]$$

Finalement : $\begin{cases} x \equiv 11 \text{ [}43\text{]} \\ x \equiv 10 \text{ [}47\text{]} \end{cases}$ D'où : x est solution du système (S')

(b) En déduire que : $x \equiv 527[2021]$ (On pourra utiliser la partie I) (0.5pt)On a:

$$(S) \Rightarrow \begin{cases} x \equiv 11 \, [43] \\ x \equiv 10 \, [47] \end{cases} \Leftrightarrow (\exists (k, k') \in \mathbb{Z}^2); \begin{cases} x - 11 = 43k \\ x - 10 = 47k' \end{cases}$$
$$\Rightarrow 47k' - 43k = (x - 10) - (x - 11)$$
$$\Rightarrow 47k' - 43k = 1$$

D'après la question **I)2)**, on a : k' = 47k'' + 12, avec k'' dans \mathbb{Z} , alors x - 11 = 43(47k'' + 12)Donc: x = 2021k'' + 527, d'où: $x \equiv 527$ [2021]

igl(2igr) Donner l'ensemble des solutions dans $\mathbb Z$ du système (S).

(0.5pt)

- Si $x \equiv 527$ [2021], alors : $\begin{cases} x \equiv 527$ [43] $x \equiv 527$ [47] (car $2021 = 43 \times 47$), et puisque $\begin{cases} 527 \equiv 11$ [43] $527 \equiv 10$ [47] Alors : $\left\{ \begin{array}{l} x \equiv 11 \, [43] \\ x \equiv 10 \, [47] \end{array} \right. \mbox{, d'où } x \mbox{ solution de } (S').$
- Si $\left\{ \begin{array}{ll} x \equiv 11 \, [43] \\ x \equiv 10 \, [47] \end{array} \right.$ alors : $\left\{ \begin{array}{ll} x^{41} \equiv 11^{41} \, [43] \\ x^{47} \equiv 10^{47} \, [47] \end{array} \right.$ Comme : $\left\{ \begin{array}{ll} 11^{41} \equiv 4 \, [43] \\ 10^{47} \equiv 10 \, [47] \end{array} \right.$ (Fermat. Q.III)1)a)) Alors : $\begin{cases} x^{41} \equiv 4 \, [43] \\ x^{47} \equiv 10 \, [47] \end{cases} \text{, d'où } x \text{ solution de } (S)$

Finalement $(S) \Leftrightarrow (S') \Leftrightarrow x \equiv 527 [2021]$

D'où l'ensemble des solution dans $\mathbb Z$ du système (S) est : $S_S = \left\{2021k + 527/k \in \mathbb Z\right\}$