www.elmaths.com www.fb.com/elmaths1

تصحيح الامتحان الوطني الموحد للباكلوريا الدورة العادية 2021 مادة الرياضيات - المسالك الدولية

الثانية باك علوم تجريبية

المدة: 3 ساعات المعامل: 7

www.elmaths.com

f : www.fb.com/elmaths1

2BAC-SVT-PC

Exercice 1 (2 points)

(a) Résoudre dans \mathbb{R} l'équation : $e^{2x} - 4e^x + 3 = 0$

(0.5pt)

(0.5pt)

$$e^{2x} - 4e^x + 3 = 0 \Leftrightarrow e^{2x} - 4e^x + 4 - 1 = 0$$

$$\Leftrightarrow (e^x - 2)^2 - 1 = 0$$

$$\Leftrightarrow (e^x - 2 - 1)(e^x - 2 + 1) = 0$$

$$\Leftrightarrow (e^x - 3)(e^x - 1) = 0$$

$$\Leftrightarrow e^x - 3 = 0 \quad \text{ou} \quad e^x - 1 = 0$$

$$\Leftrightarrow e^x = 3 \quad \text{ou} \quad e^x = 1$$

$$\Leftrightarrow x = \ln 3 \quad \text{ou} \quad x = \ln 1 = 0$$

D'où l'ensemble des solutions de cette équation est :

 $S_1 = \left\{0; \ln 3\right\}$

(b) Résoudre dans \mathbb{R} l'inéquation : $e^{2x} - 4e^x + 3 < 0$ Le signe de $e^{2x} - 4e^x + 3$ est le même que le signe de $x^2 - 4x + 3$, alors on a :

x	$-\infty$		0		$\ln 3$		$+\infty$
$e^{2x} - 4e^x + 3$	Q	+	0	_	0	+	

Donc: $e^{2x} - 4e^x + 3 \le 0 \Leftrightarrow x \in [0; \ln 3]$

 $S_2 = |0; \ln 3|$ D'où l'ensemble des solutions de cette inéquations est :

Calculer
$$\lim_{x \to 0} \frac{e^{2x} - 4e^x + 3}{e^{2x} - 1}$$
 (0.5pt)

On a : $e^{2x} - 1 = (e^x)^2 - 1 = (e^x + 1)(e^x - 1)$ et $e^{2x} - 4e^x + 3 = (e^x - 3)(e^x - 1)$, donc :

$$\lim_{x \to 0} \frac{e^{2x} - 4e^x + 3}{e^{2x} - 1} = \lim_{x \to 0} \frac{(e^x - 3)(e^x - 1)}{(e^x + 1)(e^x - 1)}$$

$$= \lim_{x \to 0} \frac{e^x - 3}{e^x + 1}$$

$$= \frac{1 - 3}{1 + 1}$$

$$= \frac{-2}{2}$$

$$= -1$$

$$\text{D'où}: \quad \lim_{x \to 0} \frac{e^{2x} - 4e^x + 3}{e^{2x} - 1} = -1$$

Montrer que l'équation $e^{2x} + e^x + 4x = 0$ admet une solution dans l'intervalle [-1,0]

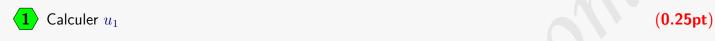
On considère la fonction h définie sur \mathbb{R} par : $h(x) = e^{2x} + e^x + 4x$.

La fonction h est continue sur \mathbb{R} , car somme, composée de fonctions continues sur \mathbb{R} .

D'où d'après le théorème des valeurs intermédiaires, la fonction h admet une solution dans [-1,0]

Exercice 2 (4 points)

Soit (u_n) la suite numérique définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{u_n}{3 - 2u_n}$ pour tout n de $\mathbb N$



$$u_1 = \frac{u_0}{3 - 2u_0} = \frac{\frac{1}{2}}{3 - 2 \times \frac{1}{2}} = \frac{\frac{1}{2}}{3 - 1} = \frac{\frac{1}{2}}{\frac{2}{2}} = \frac{1}{4}$$

D'où : $u_1 = \frac{1}{4}$

Montrer par récurrence que pour tout
$$n$$
 de \mathbb{N} , $0 < u_n \le \frac{1}{2}$ (0.5pt)

- $\bullet \ \mbox{Pour} \ n = 0 \mbox{, on a} \ u_0 = \frac{1}{2} \mbox{, alors} : 0 < u_0 \leq \frac{1}{2} \label{eq:numbers}$
- Soit n de \mathbb{N} , supposons que $0 < u_n \le \frac{1}{2}$ et montrons que $0 < u_{n+1} \le \frac{1}{2}$. On sait (par hypothèse de récurrence) :

$$0 < u_n \le \frac{1}{2} \Leftrightarrow -1 < -2u_n \le 0$$

$$\Leftrightarrow 2 < 3 - 2u_n \le 3$$

$$\Leftrightarrow \frac{1}{3} < \frac{1}{3 - 2u_n} \le \frac{1}{2}$$

$$\Leftrightarrow 0 \times \frac{1}{3} < u_n \times \frac{1}{3 - 2u_n} \le \frac{1}{2} \times \frac{1}{2}$$

$$\Leftrightarrow 0 < \frac{u_n}{3 - 2u_n} \le \frac{1}{4} \le \frac{1}{2}$$

$$\Leftrightarrow 0 < u_{n+1} \le \frac{1}{2}$$

D'après le principe du raisonnement par récurrence, $\forall n \in \mathbb{N}, \quad 0 < u_n \leq \frac{1}{2}$

Montrer que pour tout
$$n$$
 de \mathbb{N} , $\frac{u_{n+1}}{u_n} \leq \frac{1}{2}$ Pour tout n de \mathbb{N} , on a :

$$\frac{u_{n+1}}{u_n} = \frac{\frac{u_n}{3 - 2u_n}}{u_n} = \frac{u_n}{3 - 2u_n} \times \frac{1}{u_n} = \frac{1}{3 - 2u_n}$$

(0.5pt)

D'après la question (2), on a :

$$0 < u_n \le \frac{1}{2} \Leftrightarrow -1 < -2u_n \le 0 \Leftrightarrow 2 < 3 - 2u_n \le 3$$
$$\Leftrightarrow \frac{1}{3} < \frac{1}{3 - 2u_n} \le \frac{1}{2}$$
$$\Leftrightarrow \frac{1}{3} < \frac{u_{n+1}}{u_n} \le \frac{1}{2}$$

 $\mathsf{D'où}: \quad \left(\forall n \in \mathbb{N}\right); \quad \frac{u_{n+1}}{u_n} \leq \frac{1}{2}$

 (\mathbf{b}) En déduire la monotonie de la suite (u_n)

(0.5pt)

D'après la question précédente, pour tout n de \mathbb{N} , $0 < \frac{u_{n+1}}{u_n} \le \frac{1}{2} < 1$, alors $u_{n+1} \le u_n$

D'où : la suite (u_n) est décroissante.

4 a Montrer que pour tout n de \mathbb{N} , $0 < u_n \le \left(\frac{1}{2}\right)^{n+1}$; puis calculer la limite de la suite (u_n) (0.75pt)

• Pour n=0, on a $u_0=\frac{1}{2}$ et $\left(\frac{1}{2}\right)^{0+1}=\frac{1}{2}$, alors : $0< u_0 \leq \left(\frac{1}{2}\right)^{0+1}$

• Soit n de \mathbb{N} , supposons que $0 < u_n \le \left(\frac{1}{2}\right)^{n+1}$ et montrons que $0 < u_{n+1} \le \left(\frac{1}{2}\right)^{n+2}$ On sait (par hypothèse de récurrence et la question 3)a)):

$$\begin{cases} 0 < u_n \le \left(\frac{1}{2}\right)^{n+1} \\ 0 < \frac{u_{n+1}}{u_n} \le \frac{1}{2} \end{cases} \Rightarrow 0 < u_{n+1} \le \frac{1}{2}u_n$$
$$\Rightarrow 0 < u_{n+1} \le \frac{1}{2} \times \left(\frac{1}{2}\right)^{n+1}$$
$$\Rightarrow 0 < u_{n+1} \le \left(\frac{1}{2}\right)^{n+2}$$

D'après le principe du raisonnement par récurrence, $\forall n \in \mathbb{N}, \quad 0 < u_n \leq \left(\frac{1}{2}\right)^{n+1}$

 $\mathsf{Comme} : \forall n \in \mathbb{N}, \quad 0 < u_n \leq \left(\frac{1}{2}\right)^{n+1} \text{, et puisque} : 0 < \frac{1}{2} < 1 \text{, alors} : \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0 \text{,}$

 $\mathsf{D'où}: \lim_{n \to +\infty} u_n = 0$

(b) On pose $v_n = \ln(3 - 2u_n)$ pour tout n de \mathbb{N} , calculer $\lim v_n$

(0.5pt)

On a : $\lim_{n \to +\infty} u_n = 0$, alors : $\lim_{n \to +\infty} 3 - 2u_n = 3$

Puisque la fonction \ln est continue sur $]0;+\infty[$ et que $3\in]0;+\infty[$, alors :

$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \ln (3 - 2u_n) = \ln \left(\lim_{n \to +\infty} 3 - 2u_n \right) = \ln 3$$

D'où : $\lim_{n \to +\infty} v_n = \ln 3$

$$\frac{1}{u_{n+1}} - 1 = \frac{3 - 2u_n}{u_n} - 1 = \frac{3 - 2u_n - u_n}{u_n} = \frac{3 - 3u_n}{u_n} = 3\left(\frac{1 - u_n}{u_n}\right) = 3\left(\frac{1}{u_n} - 1\right)$$

$$\mathsf{D'où}: \quad \Big(\forall n \in \mathbb{N}\Big); \quad \frac{1}{u_{n+1}} - 1 = 3\left(\frac{1}{u_n} - 1\right)$$

(b) En déduire u_n en fonction de n pour tout n de $\mathbb N$

(0.5pt)

Pour tout n de \mathbb{N} , on a : $\frac{1}{u_{n+1}}-1=3\left(\frac{1}{u_n}-1\right)$ et $\frac{1}{u_n}-1\neq 0$,

Donc (par le produit télescopique) :

$$\begin{cases}
\frac{1}{u_1} - 1 = 3\left(\frac{1}{u_0} - 1\right) \\
\frac{1}{u_2} - 1 = 3\left(\frac{1}{u_1} - 1\right) \\
\vdots \\
\frac{1}{u_{n-1}} - 1 = 3\left(\frac{1}{u_{n-2}} - 1\right) \\
\frac{1}{u_n} - 1 = 3\left(\frac{1}{u_{n-1}} - 1\right)
\end{cases}$$

Donc :

$$\frac{1}{u_n} - 1 = 3^n \left(\frac{1}{u_0} - 1\right) = 3^n (2 - 1) = 3^n \Leftrightarrow \frac{1}{u_n} = 3^n + 1 \Leftrightarrow u_n = \frac{1}{3^n + 1}$$

D'où: $\forall n \in \mathbb{N}; \quad u_n = \frac{1}{3^n + 1}$

Exercice 3 (5 points)

Résoudre dans l'ensemble $\mathbb C$ des nombres complexes, l'équation : $z^2 - \sqrt{3}z + 1 = 0$ (0.75pt) Le discriminant Δ de l'équation est :

$$\Delta = \sqrt{3}^2 - 4 \times 1 = 3 - 4 = -1 = i^2$$

Donc l'équation admet deux solutions sont :

$$z_1 = \frac{\sqrt{3} + i}{2}$$
; $z_2 = \frac{\sqrt{3} - i}{2}$

D'où l'ensemble des solutions de équation est : $S = \left\{ \frac{\sqrt{3} - i}{2}; \frac{\sqrt{3} + i}{2} \right\}$

- Soient les nombres complexes $a = e^{i\frac{\pi}{6}}$ et $b = \frac{3}{2} + i\frac{\sqrt{3}}{2}$
 - f a Écrire a sous forme algébrique.

(0.25pt)

$$a = e^{i\frac{\pi}{6}} = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

(b) Vérifier que $\bar{a}b = \sqrt{3}$

$$\overline{a}b = \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\left(\frac{3}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{4} + \frac{3}{4}i - \frac{3}{4}i + \frac{\sqrt{3}}{4} = \frac{3\sqrt{3} + \sqrt{3}}{4} = \frac{4\sqrt{3}}{4} = \sqrt{3}$$

D'où: $\overline{a}b = \sqrt{3}$

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B et C d'affixes respectives a, b et \bar{a} .

Montrer que le point B est l'image du point A par une homothétie h de centre O dont on déterminera le rapport. (0.5pt)

On a $|a| = \left| e^{i\frac{\pi}{6}} \right| = 1$ et d'après la question précédente, on a :

$$\overline{a}b = \sqrt{3} \Leftrightarrow \overline{a}ab = \sqrt{3}a$$

$$\Leftrightarrow |a|^2b = \sqrt{3}a$$

$$\Leftrightarrow b = \sqrt{3}a$$

$$\Leftrightarrow \overrightarrow{OB} = \sqrt{3}\overrightarrow{OA}$$

D'où : le point B est l'image du point A par l'homothétie h de centre O et de rapport $\sqrt{3}$

Soient z l'affixe d'un point M du plan et z' l'affixe du point M' image de M par la rotation R de centre A et d'angle $\frac{\pi}{2}$

(a) Écrire z' en fonction de z et a. (0.5pt)

$$R(M) = M' \Leftrightarrow z_{M'} - z_A = e^{i\frac{\pi}{2}} (z_M - z_A)$$
$$\Leftrightarrow z' - a = i (z - a)$$
$$\Leftrightarrow z' = i (z - a) + a$$

D'où : z' = i(z - a) + a

b Soit d l'affixe du point D image de C par la rotation R, montrer que d = a + 1 (0.25pt)

$$R(C) = D \Leftrightarrow d = i(\overline{a} - a) + a$$
$$\Leftrightarrow d = i(-2i\operatorname{Im} a) + a$$
$$\Leftrightarrow d = -i \times 2i \times \frac{1}{2} + a$$
$$\Leftrightarrow d = 1 + a$$

D'où : d = a + 1

© Soit I le point d'affixe le nombre 1, montrer que ADIO est un losange. (0.5pt)

$$d-1=a \Leftrightarrow \overrightarrow{ID}=\overrightarrow{OA} \Leftrightarrow ADIO$$
est un parallélogramme (1)

$$\begin{cases} OA = |a| = \left| e^{i\frac{\pi}{6}} \right| = 1 \\ \Rightarrow OA = OI \quad (2) \end{cases}$$

$$OI = |z_I| = |1| = 1$$

De (1) et (2) on en déduit que : ADIO est un losange

(0.5pt)

(a) Vérifier que $d-b=\frac{\sqrt{3}-1}{2}(1-i)$; en déduire un argument du nombre d-b(0.75pt)

$$d - b = 1 + a - b = 1 + \frac{\sqrt{3}}{2} + i\frac{1}{2} - \frac{3}{2} - i\frac{\sqrt{3}}{2}$$

$$= \frac{2 + \sqrt{3} - 3}{2} - \frac{\sqrt{3} - 1}{2}i$$

$$= \frac{\sqrt{3} - 1}{2} - \frac{\sqrt{3} - 1}{2}i$$

$$= \frac{\sqrt{3} - 1}{2}(1 - i)$$

 $d - b = \frac{\sqrt{3} - 1}{2} \left(1 - i \right)$ D'où:

$$d - b = \frac{\sqrt{3} - 1}{2} (1 - i) \Leftrightarrow d - b = \left(\sqrt{3} - 1\right) \left(\frac{1}{2} - \frac{1}{2}i\right)$$
$$\Leftrightarrow d - b = \left(\sqrt{3} - 1\right) e^{-i\frac{\pi}{4}}$$

Puisque $\sqrt{3} - 1 > 0$, alors : $\arg(d - b) \equiv -\frac{\pi}{4} [2\pi]$

(b) Écrire le nombre 1-b sous forme trigonométrique.

(0.5pt)

$$1 - b = 1 - \frac{3}{2} - i\frac{\sqrt{3}}{2} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$$

D'où: $1-b = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$

 (\mathbf{c}) Déduire une mesure de l'angle $(\overrightarrow{BI}, \overrightarrow{BD})$

(0.5pt)

$$\left(\overrightarrow{BI}, \overrightarrow{BD}\right) \equiv \arg\left(\frac{d-b}{1-b}\right) [2\pi] \equiv \arg\left(d-b\right) - \arg\left(1-b\right) [2\pi] \equiv -\frac{\pi}{4} - \frac{4\pi}{3} [2\pi]$$
$$\equiv -\frac{3\pi}{12} - \frac{16\pi}{12} [2\pi] \equiv -\frac{19\pi}{12} [2\pi] \equiv \frac{5\pi}{12} [2\pi]$$

 $\left(\widehat{\overrightarrow{BI}}, \widehat{\overrightarrow{BD}}\right) \equiv \frac{5\pi}{12} \left[2\pi\right]$

Exercice 4 (9 points)

Soit la fonction f définie sur $[0, +\infty[$ par : f(0) = 0 et $f(x) = 2x \ln x - 2x$ si x > 0

et (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité : 1cm)

 $\langle 1 \rangle$ Montrer que f est continue à droite au point 0.

(0.5pt)

Puisque $\lim_{x\to 0^+} x \ln x = 0$ et $\lim_{x\to 0^+} 2x = 0$, alors :

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2x \ln x - 2x = \lim_{x \to 0^+} 2(x \ln x - x) = 2(0 - 0) = 0 = f(0)$$

D'où : la fonction f est continue à droite au point 0.

2 (a) Calculer $\lim_{x \to +\infty} f(x)$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2x \ln x - 2x) = \lim_{x \to +\infty} 2x (\ln x - 1)$$

Comme $\lim_{x \to +\infty} 2x = +\infty$ et $\lim_{x \to +\infty} (\ln x - 1) = +\infty$, alors : $\lim_{x \to +\infty} 2x (\ln x - 1) = +\infty$

D'où : $\lim_{x \to +\infty} f(x) = +\infty$

b Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter géométriquement le résultat. (0.5pt)

$$\lim_{x \to +\infty} \frac{f\left(x\right)}{x} = \lim_{x \to +\infty} \left(\frac{2x \ln x - 2x}{x}\right) = \lim_{x \to +\infty} 2\left(\ln x - 1\right) = +\infty$$

Donc: $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$

D'où : (C_f) admet une branche parabolique de direction l'axe des ordonnées au voisinage de $+\infty$

(0.75pt) a Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et interpréter géométriquement le résultat.

$$\lim_{x \to 0^{+}} \frac{f(x)}{x} = \lim_{x \to 0^{+}} \left(\frac{2x \ln x - 2x}{x} \right) = \lim_{x \to 0^{+}} 2(\ln x - 1) = -\infty$$

Donc: $\lim_{x \to 0^{+}} \frac{f(x)}{x} = -\infty$

On a: $\lim_{x \to 0^+} \frac{f\left(x\right)}{x} = -\infty \Leftrightarrow \lim_{x \to 0^+} \frac{f\left(x\right) - 0}{x - 0} = -\infty \Leftrightarrow \lim_{x \to 0^+} \frac{f\left(x\right) - f\left(0\right)}{x - 0} = -\infty$

D'où : la fonction f n'est pas dérivable à droite au point 0

(b) Calculer f'(x) pour tout x de $]0, +\infty[$. (0.5pt) La f est dérivable sur $]0, +\infty[$ comme somme et produit des fonctions dérivables sur $]0, +\infty[$ donc pour tout x de $]0, +\infty[$, on a :

$$f'(x) = (2x)' \ln x + 2x (\ln x)' - (2x)'$$

= $2 \ln x + \frac{2x}{x} - 2$
= $2 \ln x$

D'où: $(\forall x \in]0, +\infty[); \quad f'(x) = 2 \ln x$

- © Dresser le tableau de variations de la fonction f sur $[0, +\infty[$ (0.5pt)
 - Si $x \in]0,1]$, alors $\ln x \le 0$, alors $f'(x) \le 0$, d'où f est décroissante sur]0,1]
 - Si $x \in [1, +\infty[$, alors $\ln x \ge 0$, alors $f'(x) \ge 0$, d'où f est croissante sur $[1, +\infty[$



(0.5pt)

(a) Résoudre dans l'intervalle $]0, +\infty[$ les équations f(x) = 0 et f(x) = x(0.5pt)

Soient S_1 et S_2 les ensembles des solutions d'équations respectives f(x) = 0 et f(x) = x.

$$f(x) = 0 \Leftrightarrow 2x \ln x - 2x = 0$$

$$\Leftrightarrow 2x (\ln x - 1) = 0$$

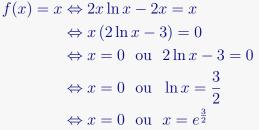
$$\Leftrightarrow x = 0 \text{ ou } \ln x - 1 = 0$$

$$\Leftrightarrow x = 0 \text{ ou } \ln x = 1$$

$$\Leftrightarrow x = 0 \text{ ou } x = e$$

Puisque : $0 \notin]0, +\infty[$ et $e \in]0, +\infty[$

Alors: $S_1 = \{e\}$

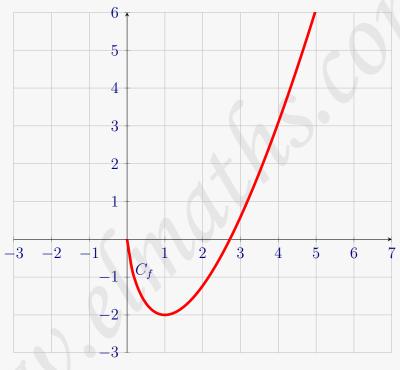


Puisque : $0 \notin [0, +\infty[$ et $e^{\frac{3}{2}} \in [0, +\infty[$

Alors: $S_2 = \left\{ e^{\frac{3}{2}} \right\}$

(b) Construire la courbe (C) dans le repère (O, \vec{i}, \vec{j}) (on prend $e^{\frac{3}{2}} \simeq 4.5$)

(1pt)



(a) En utilisant une intégration par parties, montrer que $\int_{1}^{e} x \ln x dx = \frac{1+e^2}{4}$ (0.5pt)

Par la méthode d'intégration par parties, on a :

$$\int_{1}^{e} x \ln x dx = \int_{1}^{e} \left(\frac{1}{2}x^{2}\right)' \ln x dx = \left[\frac{1}{2}x^{2} \ln x\right]_{1}^{e} - \int_{1}^{e} \frac{1}{2}x^{2} \frac{1}{x} dx$$

$$= \frac{1}{2}e^{2} \ln e - \frac{1}{2}e^{1} \ln 1 - \int_{1}^{e} \frac{1}{2}x dx = \frac{1}{2}e^{2} - \left[\frac{1}{4}x^{2}\right]_{1}^{e}$$

$$= \frac{1}{2}e^{2} - \left[\frac{1}{4}e^{2} - \frac{1}{4} \times 1^{2}\right] = \frac{1}{2}e^{2} - \frac{1}{4}e^{2} + \frac{1}{4}$$

$$= \frac{2e^{2} - e^{2} + 1}{4} = \frac{1 + e^{2}}{4}$$

 $\int x \ln x dx = \frac{1 + e^2}{4}$ D'où:

b En déduire :
$$\int_{1}^{c} f(x)dx$$
 (0.5pt)

$$\int_{1}^{e} f(x)dx = \int_{1}^{e} 2x \ln x - 2x dx$$

$$= 2 \int_{1}^{e} x \ln x dx - \int_{1}^{e} 2x dx$$

$$= 2 \times \frac{1 + e^{2}}{4} - \left[x^{2}\right]_{1}^{e}$$

$$= \frac{1 + e^{2}}{2} - \left[e^{2} - 1^{2}\right]$$

$$= \frac{1 + e^{2}}{2} - \frac{2e^{2}}{2} + \frac{2}{2}$$

$$= \frac{1 + e^{2} - 2e^{2} + 2}{2}$$

$$= \frac{3 - e^{2}}{2}$$

D'où :
$$\int_{-1}^{e} f(x)dx = \frac{3 - e^2}{2}$$

6 a Déterminer le minimum de
$$f$$
 sur $]0, +\infty[$ (0.25pt)

La fonction f est décroissante sur [0,1] et croissante sur $[1,+\infty[$ donc f admet un minimum au point 1 est f(1) = -2,

d'où: le minimum de f sur $]0, +\infty[$ est -2

b En déduire que pour tout
$$x$$
 de $]0, +\infty[$, $\ln x \ge \frac{x-1}{x}$

Pour tout x de $]0, +\infty[$, on a :

$$f(x) \ge \min_{x \in]0, +\infty[} f(x) \Leftrightarrow 2x \ln x - 2x \ge -2$$

$$\Leftrightarrow x \ln x - x \ge -1$$

$$\Leftrightarrow x \ln x \ge x - 1$$

$$\Leftrightarrow \ln x \ge \frac{x - 1}{x} \quad \left(\operatorname{car} x > 0 \right)$$

D'où:
$$(\forall x \in]0, +\infty[), \quad \ln x \ge \frac{x-1}{x}$$

Soit g la restriction de la fonction f à l'intervalle $[1, +\infty]$

(a) Montrer que la fonction
$$g$$
 admet une fonction réciproque g^{-1} définie sur un intervalle J qu'on déterminera. (0.5pt)

Pour tout x de $[1, +\infty[$, la fonction f est continue, dérivable et strictement croissante.

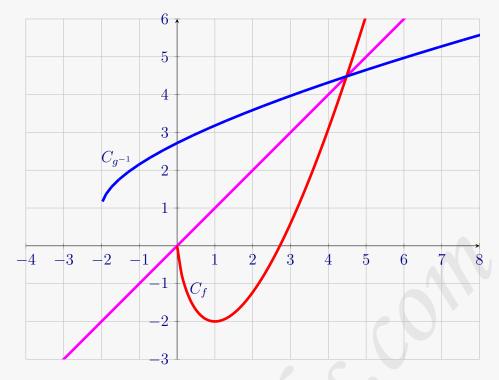
Alors q est continue, dérivable et strictement croissante sur $[1, +\infty[$.

la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J

Avec:
$$J = f\left(\left[1, +\infty\right[\right) = \left[f\left(1\right), \lim_{x \to +\infty} f\left(x\right)\right] = \left[-2, +\infty\right[$$

0

(b) Construire dans le même repère (O, \vec{i}, \bar{j}) la courbe représentative de la fonction g^{-1} (0.75pt)



8 On considère la fonction
$$h$$
 définie sur \mathbb{R} par :
$$\begin{cases} h(x) = x^3 + 3x \quad ; \quad x \leq 0 \\ h(x) = 2x \ln x - 2x \quad ; \quad x > 0 \end{cases}$$

 \bigcirc Étudier la continuité de h au point 0.

 $(\mathbf{0.5pt})$

(0.25pt)

On a : $h(0) = 0^3 + 3 \times 0 = 0$ et $\lim_{x \to 0^+} x \ln x = 0$, alors :

$$\lim_{x \to 0^{+}} h(x) = \lim_{x \to 0^{+}} 2x \ln x - 2x = 2 \times 0 - 2 \times 0 = 0 = h(0)$$

D'où : la fonction h est continue au point 0

b Étudier la dérivabilité de la fonction h à gauche au point 0 puis interpréter géométriquement le résultat. (0.5pt)

$$\lim_{x \to 0^{-}} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{3} + 3x}{x} = \lim_{x \to 0^{-}} x^{2} + 3 = 3$$

Donc : h est dérivable à gauche au point 0 et on a $h_g'(0) = 3$

D'où : la courbe de h admet une demi-tangente à gauche au point 0 d'équation y = 3x

 \bigcirc La fonction h est-elle dérivable au point 0? justifier.

$$\lim_{x \to 0^{+}} \frac{h\left(x\right) - h\left(0\right)}{x - 0} = \lim_{x \to 0^{+}} \frac{2x \ln x - 2x}{x} = \lim_{x \to 0^{+}} 2 \ln x - 2 = -\infty$$

Donc h n'est pas dérivable à droite au point 0

D'où : h n'est pas dérivable au point 0